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LElTER TO THE EDJTOR 

Scaling of the active zone in the Eden process on percolation 
networks and the ballistic deposition model 

Fereydoon Family and Tamis Vicsekt 
Department of Physics, Emory University, Atlanta, CA 30322, USA 

Received I I  October 1984 

Abstract. The interface of the Eden clusters on percolation networks and the ballistic 
deposition model is studied by Monte Carlo simulations, using a simple definition for the 
surface thickness. The width of the active zone in the ballistic deposition model is found 
to diverge differently from the mean height, indicating breakdown of the single scaling 
length assumption in this model. The exponents Y and Y' describing, respectively, the 
divergence of the radius and the active zone of the Eden clusters on percolation networks 
appear to be the same within the statistical errors. The central value of U', however, is 
slightly, but systematically, less than v. The surface thickness of ballistic deposits is shown 
to exhibit finite-size scaling. 

Clusters formed by kinetic growth processes have attracted great interest recently 
because they appear in a wide variety of phenomena in physics, chemistry, biology 
and engineering (see e.g. Family and Landau (1984) and references therein). The 
studies of such processes have mainly been concerned with the geometry of the clusters 
and with the properties of the cluster size distribution. 

The main result concerning these non-equilibrium phenomena was that both the 
individual clusters and the ensembles of clusters display scaling behaviour similar to 
that which appears in the experiments and theories on equilibrium phase transitions. 
It was found that the correlation within large kinetically grown objects such as diffusion 
limited aggregates (Witten and Sander 198 1 ), clusters generated in kinetic gelation 
models (Family 1983) or cluster-cluster aggregates (Meakin 1983a, Kolb et a1 1983) 
decayed algebraically corresponding to scaling and fractal geometry. The size depen- 
dence of the cluster size distribution in the diffusion limited deposition (RBcz and 
Vicsek 1983) and the cluster-cluster aggregation (Vicsek and Family 1984) models has 
also been shown to scale in analogy with the behaviour of the same quantity in 
percolation near the threshold or in Ising models at the critical point. 

Very recently numerical evidence was obtained by Plischke and RBcz (1984, R6cz 
and Plischke 1984) suggesting that the above analogy is violated in the diffusion limited 
aggregation (DLA) and the Eden model (Eden 1961). In an isotropic equilibrium system 
there is a single characteristic length diverging at the critical point, and scaling is a 
consequence of this fact. According to the results of Plischke and Rhcz, however, in 
the DLA and the Eden models as the number of particles in a cluster tends to infinity, 
the radius of the cluster and the width of the active zone diverge with different exponents. 

t On leave from the Research Institute for Technical Physics of the Hungarian Academy of Science, PO 
Box 76, Budapest H-1325, Hungary. 
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The purpose of this letter is to study the problem of surface thickness in qualitatively 
different growth models and in this way to test how general is the breakdown of the 
single length scaling assumption. For this reason we have studied the structure of the 
active zone in the following growth models: the Eden process on the incipient infinite 
percolation network and the ballistic deposition model. These two processes are 
different in nature from those studied by Plischke and Ricz. The first model is a space 
filling growth process on a fractal, while ballistic deposition is an aggregation model 
which is expected to result in compact (non-fractal) clusters. We define the width of 
the active zone by the standard deviation of the distances of the active perimeter sites 
from the origin. This definition is much simpler to implement and gives better statistics 
for the models we study than the distribution function approach used by Plischke and 
Racz. In the Eden clusters at the percolation threshold the width of the active zone 
and the cluster radius diverge with the same power of the cluster size within the 
statistical errors. The data, however, give a slightly smaller exponent for the divergence 
of the width of the active zone. In the ballistic deposition model the surface thickness 
diverges differently from the mean height, indicating the existence of a second length 
scale in this model. Finally, we show that in the ballistic deposition model a finite-size 
scaling behaviour appears in a way which is similar to the same phenomenon in 
equilibrium systems. 

The Eden process on percolation networks is an example of a growth model on a 
fractal and is expected to have growth properties different from other models, such as 
DLA. We define this model in the following way: consider a percolation process on a 
lattice and pick the infinite cluster at pc ,  where pc is the percolation threshold. Then, 
select a site at random on this cluster and from this site grow an Eden cluster. An 
Eden cluster is grown by successively choosing at random a perimeter site and occupying 
it until a large cluster is formed. A perimeter site is any unoccupied site that is the 
nearest neighbour of an occupied site in the cluster. In order to study the width of 
the active zone the number and positions of active perimeter sites must first be 
determined. An active perimeter site is defined to be a perimeter site which has the 
potential of becoming occupied in the later stages of the growth process. All perimeter 
sites are active perimeter sites in the Eden process in Euclidean spaces. In contrast, 
in the Eden process on a percolation cluster only perimeter sites belonging to the 
percolation cluster are active perimeter sites. Eden perimeter sites falling within the 
‘holes’ in a percolation cluster cannot be occupied and are not active perimeter sites. 

In the Eden process we define the surface thickness or the width of the active zone 
in the following way. Let ri be the radius of the ith active site from the centre of mass 
of a cluster of size N. The average radius of active sites, r( N ) ,  is given by r ( N )  = 
Z ri /  np( N ) ,  where np( N )  is the number of active perimeters in the N-site cluster. We 
define the width of the active zone of an N-site cluster by a( N )  =[I: ( ri - r (  N))*] ’” ,  
which is the square root of the variance of radii of active perimeter sites. 

In order to study the Eden process on the incipient infinite cluster we first generate 
the infinite percolation cluster at pc using the ‘growing percolation’ method of Alexan- 
drowicz (1980). This process is started with a single occupied site. A site adjacent to 
this site is randomly selected. This site is considered occupied and is added to the 
cluster if a random number x attributed to the site is less than a previously fixed value 
p .  The new perimeter sites are found and the process continues in the same way. If 
the chosen perimeter site is not occupied, then it remains unoccupied, i.e. is ‘inactive’, 
forever. The clusters generated in this way, even at p = pc,  are not all infinite clusters. 
In order to obtain the necessary data on the infinite cluster we grow the percolation 
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clusters up to a reasonably large size, say N,,,, and collect data only up to a much 
smaller size, say N. Our data obtained for N,,, = 15 000 and N = 10 000 indicate that 
this is a reasonable approach. 

The Alexandrowicz method is more convenient for the present study than the 
method of filling a lattice at pc .  The reason is that the Eden process is a random 
growth process and once a site is randomly chosen and made part of the percolation 
cluster, it can also be considered as part of the Eden cluster. We therefore expect the 
results for the structure of the active zone in the Eden clusters on the percolation 
network to be the same as the structure of the active zone of the ‘growing’ percolation 
clusters in the Alexandrowicz model. 

The results for the mean radius of active perimeter sites, r ( N ) ,  the width of the 
active zone, u ( N ) ,  and the number of active perimeter sites, np(N), of an N-site 
cluster, are shown in figure 1. These results were obtained from 4000 simulations of 
percolation clusters of up to N,,, = 15 000 sites generated at p = p c  = 0.593 (Stauffer 
1984). We collected data only up to N = 10 000 sites. From figure 1 we see that the 
data for r (  N), U( N) and np( N) are consistent with the following scaling relations: 

r( N )  - N”, U( N )  - NU’, np( N )  - N” (1) 
with 

v =0.53*0.015, U‘= 0.50*0.015, a = 0.40 f 0.02. 

The value of v agrees with the expected result v = 1/D = 48/91 = 0.527 . . . , where D 
is the fractal dimension of percolation clusters. The central value of v’ appears to be 
smaller than v, suggesting that the width a ( N )  diverges more slowly than the cluster 
radius as N + CO. However, the actual error for v’ is probably larger than the quoted 
statistical error, because of the finite-size effects and systematic errors. Thus, consider- 
ing the errors in v and v’, the numerical evidence implies v =  v’ and u ( N )  diverges 

N 

Figure 1. Plots of the mean radius of active perimeter sites, r( N ) ,  the width of the active 
zone, a ( N ) ,  and the number of active perimeter sites, n , ( N )  against the cluster size N. 
The full lines drawn through the data points have slopes U = 0.53, U’ = 0.50, and CI = 0.40. 
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as the radius. Plischke and Riin found that v' is much smaller than Y for the Eden 
clusters on a square lattice. The reason v is approximately equal to v' in the present 
case is that we have studied the Eden model on a fractal. The exponent a is new and 
its value agrees with the estimate obtained in a related growth model (Bunde et a1 1984). 

In the ballistic aggregation models (Vold 1963, Sutherland 1966) the particles move 
along straight trajectories and become part of the growing cluster when they arrive at 
the surface of the aggregate. The ballistic depositidn model investigated in this paper 
is defined in the following way. Consider a line of L particles, represented by a 
horizontal line of L sites on a square lattice. Randomly select a site of a horizontal 
line above the line of particles and place a particle there. Now allow this particle to 
fall along a straight line vertically downward. The particle sticks to the line, and is 
made part of the deposit, once it reaches the nearest-neighbour site of a particle on 
the line. A large deposit is grown by releasing more particles and joining them to the 
deposit once they have reached the nearest-neighbour site of a particle in the column 
it was dropped in, or in one of the neighbouring columns. Numerical simulations 
(Meakin 1983b, Bensimon et a1 1984a) and a mean-field study (Bensimon et al 1984b) 
of ballistic models indicate that these clusters have a constant density and therefore 
they are not fractals. 

The simulations were carried out with periodic boundary conditions for various 
values of L and M, where M denotes the number of deposited particles per seed site. 
The surface thickness in this case is obtained from U'( M) = [X ( h i  - h( M))2]"2,  where 
hi is the height of the deposit at site i, and h ( M )  is the mean height. Figure 2 shows 
the dependence of h ( M )  and a,(M) on M for L=2000. The slopes of the straight 

10' 
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10 
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Figure 2. Plots of the mean height, h( M ) ,  and the width of the active zone, u , ( M ) ,  against 
the number, M, of deposited particles per seed site for ballistic deposition. The width of 
the active zone, U ~ ( M ) ~ ' ,  in the non-sticking case is also shown for comparison. The full 
lines drawn through the data points have slopes Y = 1.0, = f and v' = 0.30. 
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lines on this log-log plot indicate that both quantities increase with M as a power 
law. The mean height h ( M )  scales with M as h ( M ) - M u  where v =  1.0*0.01 in 
accordance with the earlier works concluding that ballistic deposits are not fractals. 

The width of the active zone, however, scales with a different non-trivial exponent 
as a function of M, 

u L ( M ) - M Y ’  (2) 
where 

v‘ = 0.30 f 0.02. 

For comparison we also show the surface thickness of a non-sticking deposit which is 
generated in the same way as ballistic deposits except that the falling particles do not 
stick to the particles in the neighbouring columns. The height of the columns in this 
problem follows a Poisson distribution and correspondingly, the slope of the active 
zone data in the non-sticking case has the trivial value v ‘ = i  (see figure 2). 

Expression (2) is a good approximation for uL( M) if M is not too large. According 
to our simulation results, as M increases, u L ( M )  first grows according to (2), but at 
the later stages of the growth process the width of the active zone saturates. It becomes 
an L-dependent quantity scaling with the length of the deposit as uL(m) - LB, where 
p = 0.42 f 0.03. 

This result and (2) can be combined into a finite-size scaling expression of the form 

where f ( x )  is a scaling function defined by 

for x << 1, 
constant for x >> 1, 

and y = p/  v’. To test the scaling assumption (3) we have plotted the quantity a L ( M ) / L B  
against M / L Y  for several values of M and L. Figure 3 shows that our data tend to 
fall onto a single curve supporting the validity of the scaling form (3). This type of 
finite-size scaling is similar to that observed in equilibrium models. The fluctuations 
in the surface height do not grow beyond a size dependent limit just as the susceptibility 
of a finite width ferromagnet. 

The problem of finding the number of active perimeter sites in the Eden model on 
the percolation network is analogous to the problem of growth sites for the ant in the 
labyrinth problem (Aharony and Stauff er 1984, Stanley et al 1984). The main difference 
between the two problems is that the ant in the labyrinth, as described by a random 
walker, can only move to nearest-neighbour occupied sites on a percolation network, 
whereas in the Eden model the growth can happen at any of the available growth sites. 

In conclusion, we have studied the width of the interface in the Eden clusters on 
percolation networks and the ballistic deposition model. Using a simple definition we 
have determined the width of the active zone in these models. We find that in the 
ballistic deposition model the surface thickness diverges differently from the mean 
height. This indicates that the power law divergence of the width of the active zone 
is not limited to fractals. In the Eden clusters on percolation networks, we find that 
in contrast to the Eden clusters on a square lattice, the exponent v’, describing the 
divergence of the width of the active zone, is the same as the exponent U, which 
describes the divergence of the cluster radius, within the statistical errors. However, 
the central value of v’ is slightly, but systematically, less than v. 
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Figure 3. Scaling plot for the ballistic deposition model showing that the data for uL( M ) / L p  
plotted against M I L T  for various L and M fall on a single curve supporting the scaling 
form (3). The data are for various values of M and L = 50, 100, 200 and 500, where L is 
the width of the deposit. 

In addition we have presented a finite-size scaling analysis of the ballistic deposition 
model. The simulation results support our scaling assumption. 
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DMR-82-0805 1 and Emory University Research Fund. 
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